(4) (a) C. W. Carter, Jr., Iron-Sulfur Proteins, 3, 157 (1977); (b) T. Freer, R. A. Alden, C. W. Carter, Jr., and J. Kraut, J. Biol. Chem., 250, 46 (1975).
(5) (a) R. W. Lane, J. A. Ibers, R. B. Frankel, G. C. Papaethymiou, and R. H. Holm, J. Am. Chem. Soc., 99, 84 (1977); (b) D. Coucouvanis et al., ibid., 98, 5721 (1976).
(6) J. J. Mayerle, S. E. Denmark, B. V. DePamphilis, J. A. Ibers, and R. H. Holm, J. Am. Chem. Soc., 97, 1032 (1975).
(7) (a) B. A. Averill, T. Herskovitz, R. H. Holm, and J. A. Ibers, J. Am. Chem. Soc., 95, 3523 (1973); (b) L. Que, Jr., M. A. Bobrik, J. A. Ibers, and R. H. Holm lbid., 96, 4168 (1974); (c) E. J. Laskowski et al., ibid., 100, 5322 (1978); (d) H. L. Carrell, J. P. Glusker, R. Job, and T. C. Bruice, ibid., 99, 3683 (1977).
(8) (a) R. G. Shulman, P. Eisenberger, W. E. Blumberg, and N. A. Stombaugh, Proc. Natl. Acad. Sci. U.S.A., 72, 4003 (1975); (b) R. G. Shulman, P. Eisenberger, B. K. Teo, B. M. Kincaid, and G. S. Brown, J. Mol. Biol., 124, 305 (1978).
(9) (a) D. E. Sayers, E. A. Stern, and J. R. Herriot, J. Chem. Phys., 64, 427 (1976); (b) B. Bunker and E. A. Stern, Blophys. J., 19, 253 (1977).
(10) (a) D. H. Petering and G. Palmer, Arch. Biochem. Biophys., 141, 456 (1970); (b) S. Kerestes-Nagy and E. Margoliash, J. Biol. Chem., 244, 5955 (1966).
(11) (a) R. G. Bartsch et al., Methods Enzymol., 23, 644 (1971); (b) L. E. Mortenson, R. C. Valentine, and J. E. Carnahan, Biochem. Biophys. Res. Commun., 7, 448 (1962).
(12) H. Winick in Proceedings of the IXth International Conference on High Energy Accelerators, Stanford Linear Accelerator Center, Stanford, Calif., 1974, pp 685-688.
(13) (a) P. Eisenberger, B. Kincaid, S. Hunter, D. Sayers, E. A. Stern, and F. Lytle in Proceedings of the Fourth International Conference on Vacuum Ultraviolet Radiation Physics, B. E. Koch, R. Haensel, and C. Kunz, Ed., Pergamon Press, Oxford, pp 806-807; (b) B. M. Kincaid, P. Eisenberger, and D. E. Sayers, to be published.
(14) J. Jaklevic, J. A. Kirby, M. P. Klein, A. S. Robertson, G. S. Brown, and P. Eisenberger, Solid State Commun., 23, 679 (1977).
(15) (a) B. K. Teo, P. A. Lee, A. L. Simons, P. Eisenberger, and B. M. Kincaid, J. Am. Chem. Soc., 99, 3854 (1977); (b) P. A. Lee, B. K. Teo, and A. L. Simons, ibid., 99, 3856 (1977); (c) B. K. Teo and P. A. Lee, ibid., 101, 2815 (1979).
(16) B. K. Teo, P. Eisenberger, and B. M. Kincaid, J. Am. Chem. Soc., 100, 1735 (1978)
(17) (a) A local cubic spline background removal program. (b) A local Fourier filtering routine developed by B. M. Kincaid. Application of Fourier filtering technique to EXAFS analysis has been done independently by Stern, Sayers, and Lytle. (c) See, for example, P. Eisenberger and B. M. Kincaid, Science, 200, 1441 (1978).
(18) "International Table for X-ray Crystallography". Vol. III, Kynoch Press, Birmingham, England, 1968, pp 161, 1971.
(19) D. W. Marquardt, J. Soc. Ind. Appl. Math., 11, 443 (1963)
(20) E. A. Stern, Phys. Rev., B, 10, 3027 (1974).
(21) (a) D. E. Sayers, E. A. Stern, and F. W. Lytle, Phys. Rev. Lett., 27, 1204 (1971); (b) F. W. Lytle, D. E. Sayers, and E. A. Stern. Phys. Rev. B, 11, 4825 (1975); (c) E. A. Stern, D. E. Sayers, and F. W. Lytle, ibid., 11, 4836 (1975), and references cited therein.
(22) C. A. Ashley and S. Doniach, Phys. Rev. B, 11, 1279 (1975).
(23) P. A. Lee and G. Beni, Phys. Rev. B, 15, 2862 (1977).
(24) B. M. Kincaid and P. Eisenberger, Phys. Rev. Lett., 34, 1361 (1975)
(25) See footnotes b and c of Table II.
(26) R. Cammack, Biochem. Biophys. Res. Commun., 54, 548 (1973).
(27) B. K. Teo, and J. C. Calabrese, J. Chem. Soc., Chem. Commun., 185 (1976).
(28) M. A. Bobrik, K. O. Hodgson, and R. H. Holm, Inorg. Chem., 16, 1851 (1977).
(29) W. R. Dunham, G. Palmer, R. H. Sands, and A. J. Bearden, Biochim. Biophys Acta, 253, 373 (1971).
(30) (a) C. W. Carter et al., Proc. Natl. Acad. Sci. U.S.A., 69, 3526 (1972); (b) C. W. Carter et al., J. Biol. Chem., 249, 6339 (1974).
(31) In going from $\left[\mathrm{FeS}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)\right]_{4}{ }^{2-}$ to its trianion, ${ }^{76}$ the $\mathrm{Fe}_{4} \mathrm{~S}_{4}$ core (of idealized $D_{2 d}$ symmetry in both cases) changes from a slightly compressed cu-bane-like structure (with eight long and four short Fe-s bonds of 2.296 (av) and 2.267 (av) A, respectively) to a somewhat elongated configuration (with four long and eight short $\mathrm{Fe}-\mathrm{S}$ bonds of 2.351 (av) and 2.288 (av) \dot{A}, respectively). This can be described in terms of an axial expansion along the 4 axis resulting in the elongation of the four short Fe-S bonds in the dianion by 0.08 A to the four long ones in the trianion. On the other hand, the increases in average $\mathrm{Fe}-\mathrm{S}$ and $\mathrm{Fe}-\mathrm{Fe}$ distances, in going from the dianion to the trianion, amount to only 0.025 and $0.007 \AA$, respectively.

Neutron Diffraction Analysis of the Structure of $\mathrm{H}_{3} \mathrm{Ni}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}$

Thomas F. Koetzle, *1a Jörn Müller, ${ }^{* 1 \mathrm{~b}}$ Donald L. Tipton, ${ }^{1 \mathrm{c}}$ Donald W. Hart, ${ }^{1 \mathrm{c}}$ and Robert Bau*1c,d
Contribution from the Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, D-I Berlin 12, West Germany, and the

Department of Chemistry, University of Southern California, Los Angeles, California 90007. Received March 19, 1979

Abstract

The structure of $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}\left(\mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$, an unusual paramagnetic metal cluster complex, has been analyzed by single-crystal neutron diffraction techniques at low temperature (81 K). As predicted from an earlier X-ray diffraction study, the hydrogen atoms bridge three faces of the Ni_{4} tetrahedral core. Although the Ni_{4} cluster itself is an essentially undistorted tetrahedron [with $\mathrm{Ni}-\mathrm{Ni}$ edges of $2.469(6) \AA$], the individual $\mathrm{Ni}_{3} \mathrm{H}$ linkages are unsymmetrical. The H atoms are slightly displaced away from the unique apical Ni atom: $\mathrm{Ni}-\mathrm{H}$ distances involving the apical Ni atom average to 1.716 (3) \AA, while those involving the basal Ni atoms average to $1.678(6) \AA$. The overall mean $\mathrm{Ni}-\mathrm{H}$ distance is $1.691(8) \AA$, and the H atoms are situated an average of $0.907(6) \AA$ above the $N i_{3}$ faces. Other average distances and angles in the molecule follow: $\mathrm{H} \cdots \mathrm{H}=2.316$ (6) $\AA, \mathrm{Ni}-\mathrm{C}=2.132(5) \AA, \mathrm{Ni}-\mathrm{H}-\mathrm{Ni}=93.9(3)^{\circ}, \mathrm{H}-\mathrm{Ni}-\mathrm{H}=86.1(6)^{\circ}$. The title compound crystallizes in space group $\mathrm{C} 2 / \mathrm{c}$ with the following cell parameters at $81 \mathrm{~K}: a=28.312(13) \AA, b=9.234(5) \AA, c=14.783(7) \AA, \beta=103.35(2){ }^{\circ}, V=3760$ (3) $\AA^{3}, Z=8$. The structure has been refined to yield final agreement factors of $R_{F}=0.107$ and $R_{w F}=0.067$ for 2616 reflections having $I>1.5 \sigma(I)$.

Introduction

Tetrakis (η^{5}-cyclopentadienyl)tetranickel trihydride is one of the few known examples of polynuclear organometallic complexes not containing carbonyl ligands. The compound was isolated from the reaction of $\mathrm{CpNi}(\mathrm{NO})\left(\mathrm{Cp}=\eta^{5}\right.$-cyclopentadienyl) with AlCl_{3} and $\mathrm{LiAlH}_{4} .{ }^{2}$ The presence of the three hydride ligands was inferred from the mass spectrum of the complex which showed ions resulting from the loss of one, two, and three H atoms, A particularly interesting aspect of
$\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$ is its electronic configuration. The unknown species $\mathrm{Ni}_{4} \mathrm{Cp}_{4}$ would have the expected "closed-shell" 60 -electron configuration ${ }^{3}$ and would be diamagnetic. Such a 60 -electron species is in fact known as $\mathrm{H}_{4} \mathrm{Co}_{4} \mathrm{Cp}_{4} .{ }^{4}$ However, $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$ has three additional electrons which are all unpaired, ${ }^{2}$ making the compound a rare example of a paramagnetic metal cluster complex. Spectral data give no indication of the presence of the hydride ligands, ${ }^{2}$ but IR spectra frequently do not show absorptions due to stretching frequencies from bridging hy-

Figure 1. A molecular plot ${ }^{43}$ of $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$, viewed along the approximate threefold axis of the molecule. One of the Cp rings has been removed for clarity. In this and all other plots, 50% probability ellipsoids are shown.

Table I. Experimental Quantities and Refinement Parameters

empirical formula mol wt	$\begin{aligned} & \mathrm{H}_{3} \mathrm{Ni}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \\ & 498.2 \end{aligned}$		
space group	$C 2 / c(Z=8)$		
unit cell parameters	room temp ${ }^{\text {a }}$	81 (1) $\mathrm{K}^{\text {b }}$	
a	28.32(2) \AA	28.312(13) \AA	
b	$9.23(1)^{\circ}$	$9.234(5)^{\circ}$	
c	$15.03(1)^{\circ}$	$14.783(7)^{\circ}$	
β	102.77 (8) ${ }^{\circ}$	$103.35(2)^{\circ}$	
unit cell volume	$3832(6) \AA^{3}$	3760(3) \AA^{3}	
wavelength		$1.0183(1) \AA$	
sample volume		$12.5 \mathrm{~mm}^{3}$	
calc density		$1.76 \mathrm{~g} \mathrm{~cm}^{-3}$	
data collection limit ($\sin \theta / \lambda$)		$0.68 \AA^{-1}$	
absorption coefficient (μ) ${ }^{\text {c }}$		$1.94 \mathrm{~cm}^{-1}$	
max and min transmission coefficients		0.83, 0.57	
total no. of reflections measured		10840	
no. of symmetry-independent reflections		5236	
agreement factor for data averaging ${ }^{d}$		0.12	
N_{0} (no. of reflections used in structure analysis)		2616	
N_{v} (no. of variable parameters)		425	
$R_{\Sigma}=F_{0}-\mid F_{\mathrm{c}} \\| / \Sigma F_{\mathrm{o}}$		0.107	
$\begin{aligned} & R_{w F}= \\ & \left\{\Sigma w\left(F_{0}-\left\|F_{\mathrm{c}}\right\|\right)^{2} / \Sigma w F_{0}\right\}^{1 / 2} \end{aligned}$		0.067	
		1.84	
g^{\prime} (extinction parameter)		0.64(8)	

${ }^{a}$ Reference 2 b . ${ }^{b}$ Refinement based on the setting angles of 32 carefully centered reflections. ${ }^{c}$ Calculated assuming an incoherent scattering cross section for hydrogen of $40 \mathrm{~b}{ }^{d}\left(R_{\mathrm{c}}=\Sigma_{k k l}\left[\Sigma_{i=1}^{n} \mid F_{\mathrm{o} i}{ }^{2}\right.\right.$ $\left.\left.-\left\langle F_{0}^{2}\right\rangle \mid\right] / \Sigma_{h k I} n\left|\left(F_{0}^{2}\right\rangle\right|\right)$.
drides. Moreover, the paramagnetic properties of $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$ prevent the hydride ligands from being detected in the NMR spectrum.

An X-ray investigation of $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$ was conducted by Müller, Huttner, and co-workers in 1973. ${ }^{2}$ Although the H atoms were not located directly, the authors were able to assign them to face-bridging positions, based on the observation that three of the Cp rings are tilted away from the fourth. Curiously

Figure 2. An alternative view of the $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$ molecule, showing all four Cp rings. $\mathrm{Ni}(1)$ is completely hidden behind $\mathrm{H}(3)$. The H atoms on the $\mathrm{C} p$ rings have been removed for clarity
enough, no distortion of the Ni_{4} cluster itself was observed. In order to confirm the proposed structure, and to obtain accurate distances and angles associated with the triply bridging hydride ligands, we undertook the neutron diffraction analysis described in this paper.

Experimental Section

Single crystals of $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$ suitable for neutron diffraction work were grown by very slow evaporation (7 days) of a benzene solution at room temperature. The solvent was removed by absorption of the vapor on silica gel in a closed system. Measurements were made at the Brookhaven high flux beam reactor, with an automated four-circle diffractometer operating under the Reactor Experimental Control Facility, ${ }^{5}$ and a neutron wavelength of 1.0183 (1) \AA (based on KBr , $a=6.6000 \AA$). A platelike specimen of $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$ with a volume of $12.5 \mathrm{~mm}^{3}$ was mounted on an aluminum pin oriented approximately along the crystallographic (010) direction, and placed in a liquidnitrogen cooled cryostat. The temperature of a copper block in direct contact with the aluminum pin was monitored periodically and found to be $81 \pm 1 \mathrm{~K}$. Some tendency toward split peaks was observed for certain reflections, indicating that the crystal may have developed a slight crack upon cooling. Crystal data, ${ }^{6}$ together with other experimental quantities of interest and parameters describing the subsequent least-squares refinements, are given in Table I.

Intensities of Bragg reflections were measured with a $\theta / 2 \theta$ step-scan technique. For $0<d^{*}<0.65 \AA^{-1}$, the scan range was given by $\Delta(2 \theta)$ $=2.6^{\circ}$, with a step size of 0.04°. For $0.65 \leqslant d^{*} \leqslant 1.39 \AA^{-1}$, the scan range was varied according to $\Delta(2 \theta)=2.15(1+1.13 \tan \theta)^{\circ}$, and the step size varied to give approximately 65 points in each scan. Background corrections were determined by summing the counts for four steps on either end of each scan. Squared observed structure factors were obtained as $F_{0}{ }^{2}=I \sin 2 \theta$ and corrected for absorption by a modification of the analytical method of de Meulenaer and Tompa. ${ }^{78}$ A total of 10840 measured $F_{0}{ }^{2}$ values were reduced to 5236 unique observations by averaging over the $2 / \mathrm{m}$ Laue symmetry (13 individual measurements, for which $F_{0}{ }^{2}$ varied by more than 10σ from the mean, were discarded).

Initial atomic positions for the Ni and C atoms were taken from the X-ray results. ${ }^{2}$ The H atoms on the Cp rings were placed in calculated positions assuming $d(\mathrm{C}-\mathrm{H})=1.08 \AA$, and the three hydride ligands were located in a (neutron) difference-Fourier synthesis. Least-squares refinements were carried out using a modified version of the program by Busing, Martin, and Levy, ${ }^{9}$ minimizing the quantity $\sum w\left(F_{0}\right.$ $\left.k\left|F_{\mathrm{c}}\right|\right) .^{2}$ Weights were chosen as $w=1 / \sigma^{2}\left(F_{\mathrm{o}}\right)$, where $\sigma^{2}\left(F_{\mathrm{o}}\right)=$ $\left[\sigma_{\text {count }}{ }^{2}\left(F_{0}^{2}\right)+\left(0.02 F_{0}^{2}\right)^{2}\right] / 4 F_{0}^{2}$. In the later stages of refinement, all reflections with $F_{0}{ }^{2}>1.5 \sigma_{\text {count }}\left(F_{0}{ }^{2}\right)$ were included in the analysis. The total of 425 variable parameters included positional and anisotropic thermal parameters for all atoms, a scale factor (k), and an extinction correction parameter, $g^{\prime} .{ }^{10}$ The effects of extinction were moderate, and the most significant correction factor was 0.82 (on F) for the ($60 \overline{2}$) reflection. Parameters were blocked into groups of

Table II. Fractional Atomic Positional and Thermal Parameters ${ }^{a}$ for $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$

atom	$10^{4} x$	$10^{4} y$	$10^{4} z$	$10^{3} U_{11}$	$10^{3} U_{22}$	$10^{3} U_{33}$	$10^{3} U_{12}$	$10^{3} U_{13}$	$10^{3} U_{23}$
$\mathrm{Ni}(1)$	1390(1)	4836(2)	0247(1)	32(1)	24(1)	26(1)	O(1)	6(1)	$-3(1)$
$\mathrm{Ni}(2)$	0820(1)	3170(3)	0787(1)	26(1)	41 (1)	32(1)	6(1)	11(1)	14(1)
$\mathrm{Ni}(3)$	$1118(1)$	2579(3)	-0604(1)	34(1)	26(1)	23(1)	-2(1)	3(1)	-1(1)
$\mathrm{Ni}(4)$	1671(1)	2464(3)	0955(1)	26(1)	33(1)	26(1)	1(1)	3(1)	3(1)
H(1)	0848(3)	3986(9)	-0218(5)	39(4)	47(5)	46(4)	8(4)	9(3)	8(3)
H(2)	1648(3)	3284(10)	-0063(5)	49(4)	66(6)	52(4)	0(5)	18(4)	5(4)
H(3)	1362(3)	3914(9)	1238(4)	56(5)	$59(6)$	33(3)	8(5)	13(3)	-1(3)
C(11)	1278(2)	7088(4)	0486(3)	44(2)	33(3)	$55(2)$	$1(2)$	$6(2)$	-16(2)
C(12)	$1211(2)$	6827(5)	-0483(3)	79(3)	32(3)	46(2)	$-1(3)$	4(2)	9(2)
C(13)	1668(2)	6282(5)	-0621(3)	115(5)	40(3)	$71(3)$	-15(3)	64(4)	2(2)
C(14)	1999(2)	6203(5)	0264(4)	43(3)	41 (3)	113(4)	-5(3)	$37(3)$	-15(3)
C(15)	1756(2)	6691 (5)	0943(3)	39(2)	46(3)	66(3)	-6(2)	3(2)	-18(2)
H(11)	1017(3)	7451 (12)	0848(7)	63(6)	80(8)	95(7)	22(7)	20(5)	$-17(6)$
H(12)	0884(5)	7009(11)	-1005(6)	142(11)	$52(7)$	$69(6)$	9(7)	-34(6)	15(5)
H(13)	1729(6)	5976(12)	-1288(8)	248(17)	$70(8)$	$111(9)$	-22(10)	141(11)	-13(7)
H(14)	2364(4)	5830(17)	0381(11)	45(6)	122(12)	250(15)	-3(8)	69(8)	-29(11)
H(15)	1911(4)	6734(13)	1647(7)	$79(7)$	86(8)	88(7)	4(6)	-24(5)	-43(6)
C(21)	0070(2)	2705(11)	0508(4)	$30(3)$	199(10)	$100(5)$	-14(5)	8(3)	$74(6)$
C(22)	0337(2)	1543(8)	0991(4)	72(4)	105(6)	104(5)	-44(5)	36(4)	19(5)
C(23)	0591 (2)	2018(6)	1867(3)	54(3)	80(4)	$76(4)$	5(3)	$30(3)$	47(3)
C(24)	0490(2)	3485(7)	1948(4)	88(4)	107(6)	72(4)	44(4)	$58(3)$	50(4)
C(25)	0162(2)	3928(8)	$1115(4)$	67(4)	121(6)	107(5)	58(5)	59(4)	$72(5)$
H(21)	-0155(4)	2688(26)	-0185(9)	54(7)	345(30)	$117(10)$	-55(13)	-21(7)	90(15)
H(22)	0365(7)	0374(15)	0699(13)	202(21)	59(10)	218(18)	-37(12)	$73(15)$	22(11)
H(23)	0823(4)	1367(15)	2383(8)	99(8)	126(11)	101(7)	25(8)	43(7)	80(8)
H(24)	0634(5)	4169(14)	2529(7)	$162(14)$	110(11)	69(7)	54(10)	65(8)	13(7)
H(25)	-0013(6)	4979(19)	0952(11)	171(16)	184(18)	179(14)	139(15)	101(13)	126(13)
C(31)	1365(3)	1103(10)	-1452(4)	$139(8)$	133(9)	71 (5)	78(7)	$-21(5)$	-68(5)
C(32)	0966(4)	0526(6)	-1182(3)	268(13)	24(3)	49(4)	-12(5)	-35(5)	-5(2)
C(33)	0571(2)	1384(6)	-1549(3)	102(4)	65(4)	46(2)	-51(4)	-8(3)	-9(3)
C(34)	0723(2)	2487(6)	-2036(3)	91(4)	62(4)	34(2)	-3(4)	$-16(2)$	$5(2)$
C(35)	$1214(2)$	2297(8)	-1976(3)	86(4)	134(6)	41 (2)	-26(5)	30(3)	-35(3)
H(31)	1732(8)	0668(30)	-1277(13)	242(25)	410(44)	181(18)	255(31)	-79(17)	-199(24)
H(32)	0963(12)	-0475(16)	-0753(9)	666(51)	48(11)	82(9)	-87(18)	-39(15)	3(7)
H(33)	0220(6)	1182(24)	-1459(9)	127(12)	271(25)	105(10)	-122(16)	17(9)	-27(12)
H(34)	0500(6)	3358(15)	-2403(8)	179(14)	99(11)	86(7)	4(10)	$-51(8)$	$36(7)$
H(35)	1435(7)	3091(24)	-2268(10)	244(20)	303(25)	127(11)	-177(19)	143(14)	-88(14)
C(41)	2338(2)	2405(6)	1990(3)	50(3)	66(4)	62(3)	-2(3)	-23(2)	$1(3)$
C(42)	1970(2)	1645(5)	2318(2)	$51(2)$	52(3)	25(2)	$7(2)$	3(2)	$5(2)$
C(43)	$1806(2)$	0472(5)	1722(2)	69(3)	50(3)	34(2)	29(3)	11(2)	8(2)
C(44)	2072(2)	0462(6)	1016(3)	52(3)	59(4)	53(3)	$27(3)$	21(2)	17(2)
C(45)	2396(1)	1630(6)	$1170(3)$	$35(2)$	72(4)	54(2)	$17(3)$	16(2)	$15(2)$
H(41)	2520(5)	3377(15)	2319(8)	87(8)	$98(10)$	109(8)	-44(8)	-44(6)	10(7)
$\mathrm{H}(42)$	1821(4)	1916(11)	$2915(5)$	$113(8)$	$77(7)$	$38(4)$	40(6)	21 (4)	6(4)
H(43)	1541(4)	-0212(12)	1771(6)	77(8)	73(8)	79(7)	18(7)	16(6)	24(6)
H(44)	2033(4)	-0286(12)	0494(7)	98(8)	82(8)	78(6)	$50(7)$	28(6)	8(6)
$\mathrm{H}(45)$	2644(4)	1895(13)	0737(7)	60(6)	$115(9)$	100(7)	$14(6)$	41 (6)	35(7)

${ }^{a}$ Thermal parameters are in units of \AA^{2} and have the form $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{12} h k a^{*} b^{*}+2 U_{13} h l a^{*} c^{*}\right.\right.$ $\left.\left.+2 U_{23} k l b^{*} c^{*}\right)\right] .{ }^{b}$ The numbering of $\mathrm{Ni}(2)$ and $\mathrm{Ni}(4)$, as well as their attached Cp rings, has been interchanged compared to that given in ref $2 b$. This has been done to ensure that atom numbers increase upon clockwise rotation when viewed along the threefold axis with Ni(1) pointing up.
approximately 100 variables, in order to reduce the expense of the computations, and these blocks refined alternately to convergence. Neutron scattering lengths used are $b_{\mathrm{H}}=-0.374, b_{\mathrm{C}}=0.6648$, and $b_{\mathrm{Ni}}=1.03\left(\right.$ all $\left.\times 10^{-12} \mathrm{~cm}\right) .^{11}$ Lists of observed and calculated structure factors are available (see paragraph at end of paper regarding supplementary material). Final agreement factors and the mean quadratic error ("goodness of fit") are given in Table I. A final difference synthesis was essentially featureless.

Discussion

Final atomic positional and thermal parameters are listed in Table II, and selected interatomic distances and angles given in Table IIL. ${ }^{12}$ The overall molecular geometry is shown in Figures 1 and 2. In agreement with the results predicted from the earlier X-ray structure determination, ${ }^{2}$ the three hydride ligands are situated on three of the four faces of the Ni_{4} tetrahedron to give the $\mathrm{H}_{3} \mathrm{Ni}_{4}$ core approximate C_{30} symmetry. The geometry of the $\mathrm{H}_{3} \mathrm{Ni}_{4}$ cluster (Figure 3) may also be

Figure 3. The $\mathrm{H}_{3} \mathrm{Ni}_{4}$ core of the molecule, in a view emphasizing its resemblance to a cube with one corner vacant.

Table III. Selected Interactomic Distances (\AA) and Angles ${ }^{a}$ (deg)

$\mathrm{Ni}(1)-\mathrm{Ni}(2)$	2.490 (3)	$\mathrm{Ni}(2)-\mathrm{Ni}(3)$		2.458(3)
$\mathrm{Ni}(1)-\mathrm{Ni}(3)$	2.464 (3)	$\mathrm{Ni}(2)-\mathrm{Ni}(4)$		2.454 (3)
$\mathrm{Ni}(1)-\mathrm{Ni}(4)$	2.478(3)	$\mathrm{Ni}(3)-\mathrm{Ni}(4)$		$\underline{2.471(3)}$
	mean 2.477(8)			mean 2.461 (5)
$\mathrm{Ni}(1)-\mathrm{H}(1)$	$1.720(8)$	$\mathrm{H}(1) \cdots \mathrm{H}(2)$		2.317(11)
$\mathrm{Ni}(1)-\mathrm{H}(2)$	$1.718(9)$	$\mathrm{H}(1) \cdots \mathrm{H}(3)$		$2.305(10)$
$\mathrm{Ni}(1)-\mathrm{H}(3)$	$\underline{1.711(7)}$	$\mathrm{H}(2) \cdots \mathrm{H}(3)$		$2.326(9)$
	mean $1.716(3)$			mean $2.316(6)$
$\mathrm{Ni}(2)-\mathrm{H}(1)$	$1.684(7)$	$\mathrm{Ni}(1)-\mathrm{H}(1)-\mathrm{Ni}(2)$		94.0(4)
$\mathrm{Ni}(2)-\mathrm{H}(3)$	$1.674(8)$	$\mathrm{Ni}(1)-\mathrm{H}(1)-\mathrm{Ni}(3)$		93.1(4)
$\mathrm{Ni}(3)-\mathrm{H}(1)$	$1.674(8)$	$\mathrm{Ni}(1)-\mathrm{H}(2)-\mathrm{Ni}(3)$		93.6(4)
$\mathrm{Ni}(3)-\mathrm{H}(2)$	1.661 (9)	$\mathrm{Ni}(1)-\mathrm{H}(2)-\mathrm{Ni}(4)$		93.9(4)
$\mathrm{Ni}(4) \mathrm{H}(2)$	$1.672(8)$	$\mathrm{Ni}(1)-\mathrm{H}(3)-\mathrm{Ni}(2)$		94.7(3)
$\mathrm{Ni}(4)-\mathrm{H}(3)$	1.704(8)	$\mathrm{Ni}(1)-\mathrm{H}(3)-\mathrm{Ni}(4)$		93.0(3)
	mean $1.678(6)$			mean 93.7(3)
$\mathrm{Ni}(2)-\mathrm{Ni}(1)-\mathrm{Ni}(3)$	59.5(1)	$\mathrm{Ni}(1)-\mathrm{Ni}(2)-\mathrm{Ni}(3)$		59.7(1)
$\mathrm{Ni}(2)-\mathrm{Ni}(1)-\mathrm{Ni}(4)$	59.2(1)	$\mathrm{Ni}(1)-\mathrm{Ni}(2)-\mathrm{Ni}(4)$		60.2(1)
$\mathrm{Ni}(3)-\mathrm{Ni}(1)-\mathrm{Ni}(4)$	60.0(1)	$\mathrm{Ni}(1)-\mathrm{Ni}(3)-\mathrm{Ni}(2)$		60.8(1)
	mean 59.6(2)	$\mathrm{Ni}(1)-\mathrm{Ni}(3)-\mathrm{Ni}(4)$		60.3(1)
		$\mathrm{Ni}(1)-\mathrm{Ni}(4)-\mathrm{Ni}(2)$		60.7(1)
$\mathrm{Ni}(3)-\mathrm{Ni}(2)-\mathrm{Ni}(4)$	60.4(1)	$\mathrm{Ni}(1)-\mathrm{Ni}(4)-\mathrm{Ni}(3)$		59.7(1)
$\mathrm{Ni}(2)-\mathrm{Ni}(3)-\mathrm{Ni}(4)$	59.7(1)			mean 60.2(2)
$\mathrm{Ni}(2)-\mathrm{Ni}(4)-\mathrm{Ni}(3)$	59.9(1)			
	mean $60.0(2)$			
$\mathrm{H}(1)-\mathrm{Ni}(1)-\mathrm{H}(2)$	84.7(4)	$\mathrm{Ni}(2)-\mathrm{H}(1)-\mathrm{Ni}(3)$		94.1(4)
$\mathrm{H}(1)-\mathrm{Ni}(1)-\mathrm{H}(3)$	84.4(4)	$\mathrm{Ni}(3)-\mathrm{H}(2)-\mathrm{Ni}(4)$		95.7(4)
$\mathrm{H}(2)-\mathrm{Ni}(1)-\mathrm{H}(3)$	$85.4(4)$	$\mathrm{Ni}(2)-\mathrm{H}(3)-\mathrm{Ni}(4)$		$93.1(4)$
	mean $84.8(3)$			$\text { mean } 94.3(8)$
$\mathrm{H}(1)-\mathrm{Ni}(2)-\mathrm{H}(3)$	86.7(4)			
$\mathrm{H}(1)-\mathrm{Ni}(3)-\mathrm{H}(2)$	88.0 (4)			
$\mathrm{H}(2)-\mathrm{Ni}(4)-\mathrm{H}(3)$	87.1(4)			
	mean $87.3(4)$			
$\mathrm{Cp}(1)-\mathrm{X}-\mathrm{Cp}(2)^{\text {b }}$	$117.5(2)$	$\mathrm{Cp}(2)-\mathrm{X}-\mathrm{Cp}(3)^{\text {b }}$		105.0(2)
$\mathrm{Cp}(1)-\mathrm{X}-\mathrm{Cp}(3)^{\text {b }}$	112.3(2)	$\mathrm{Cp}(2)-\mathrm{X}-\mathrm{Cp}(4)^{\text {b }}$		103.6(2)
$\mathrm{Cp}(1)-\mathrm{X}-\mathrm{Cp}(4)^{\text {b }}$	112.3(2)	$\mathrm{Cp}(3)-\mathrm{X}-\mathrm{Cp}(4)^{\text {b }}$		105.1(2)
	mean $114.0(17)$			mean 104.6(5)
	$n=1$	$n=2$	$n=3$	$n=4$
$\mathrm{C}(n i)-\mathrm{C}(n j)$				
$i=1 \quad j=2$	1.423(5)	1.408(10)	1.389(11)	$1.431(6)$
23	$1.445(7)$	1.399(8)	1.377(10)	1.405(6)
34	$1.426(7)$	$1.396(8)$	$1.373(7)$	$1.421(5)$
45	$1.415(6)$	$1.420(7)$	$1.383(7)$	$1.400(7)$
$5 \quad 1$	$1.415(6)$	1.428(11)	$1.358(9)$	$1.450(6)$
$\mathrm{C}(n i)-\mathrm{H}(n i)$				
$i=1$	1.062(10)	1.075(15)	1.088(21)	1.091(14)
2	1.073(12)	1.172(20)	1.122(17)	$1.092(9)$
3	$1.078(10)$	$1.069(12)$	$1.050(18)$	0.996(14)
4	$1.065(12)$	$1.069(17)$	$1.088(14)$	$1.022(13)$
5	1.032(11)	1.091 (15)	1.114(16)	1.081(10)
$\mathrm{Ni}(n)-\mathrm{C}(n i)$				
$i=1$	2.145(5)	$2.112(6)$	$2.080(5)$	$2.139(5)$
2	2.134(5)	2.098(6)	2.083(6)	$2.136(4)$
3	$2.125(5)$	$2.139(4)$	$2.138(5)$	$2.148(5)$
4	$2.134(5)$	$2.155(5)$	$2.156(4)$	$2.160(5)$
5	2.140(5)	$2.147(5)$	2.123(4)	$2.145(6)$
$\angle \mathrm{C}-\mathrm{C}-\mathrm{C}$				
at $C(n 1)$	109.1(4)	106.6(5)	107.8(6)	105.8(4)
$C(n 2)$	106.6(4)	109.4(7)	107.9(5)	109.0(4)
$\mathrm{C}(\mathrm{n} 3)$	108.0(4)	108.1(5)	108.0(6)	108.2(5)
$C(n 4)$	108.1(4)	108.1(6)	107.7(6)	108.3(4)
$\mathrm{C}(\mathrm{n} 5)$	108.2(4)	107.8(6)	108.7(6)	108.7(4)
$\angle \mathrm{H} \cdot \mathrm{C}-\mathrm{Ni}$				
at $\mathrm{C}(n 1)$	122.4(7)	122.5(7)	122.3(8)	123.0(8)
$\mathrm{C}(\mathrm{n} 2)$	124.3(6)	120.4(8)	123.1(7)	122.7(6)
$\mathrm{C}(\mathrm{n} 3)$	123.3(7)	124.8(6)	124.9(8)	122.4(6)
$\mathrm{C}(n 4)$	124.2(9)	$124.5(7)$	124.8(8)	125.6 (6)
$\mathrm{C}(\mathrm{n} 5)$	124.1(7)	127.9(8)	119.8(8)	124.1(6)
H-C-C				
$\mathrm{H}(n 1)-\mathrm{C}(n 1)-\mathrm{C}(n 2)$	127.9(6)	127.1(16)	$125.8(20)$	123.9(8)
$\mathrm{H}(n 1)-\mathrm{C}(n 1)-\mathrm{C}(n 5)$	122.9(6)	126.4(15)	$126.4(20)$	$130.3(8)$
$\mathrm{H}(n 2)-\mathrm{C}(n 2)-\mathrm{C}(n 1)$	128.1 (8)	126.1 (11)	$126.4(20)$	$127.5(7)$
$\mathrm{H}(n 2)-\mathrm{C}(n 2)-\mathrm{C}(n 3)$	127.3(7)	$124.5(10)$	$125.7(20)$	$123.4(7)$
$\mathrm{H}(n 3)-\mathrm{C}(n 3)-\mathrm{C}(n 2)$	124.0(11)	125.8(10)	123.7(13)	126.0(6)
$\mathrm{H}(n 3)-\mathrm{C}(n 3)-\mathrm{C}(n 4)$	128.0(11)	126.0(10)	128.3(13)	125.8(7)

Table III (Continued)

	$n=1$	$n=2$	$n=3$	$n=4$
$\mathrm{H}-\mathrm{C}-\mathrm{C}$				
$\mathrm{H}(n 4)-\mathrm{C}(n 4)-\mathrm{C}(n 3)$	$125.0(9)$	$126.5(8)$	$126.4(10)$	$125.0(8)$
$\mathrm{H}(n 4)-\mathrm{C}(n 4)-\mathrm{C}(n 5)$	$126.9(9)$	$125.4(8)$	$125.9(10)$	$126.7(7)$
$\mathrm{H}(n 5)-\mathrm{C}(n 5)-\mathrm{C}(n 1)$	$127.4(7)$	$123.9(12)$	$128.5(15)$	$126.7(8)$
$\mathrm{H}(n 5)-\mathrm{C}(n 5)-\mathrm{C}(n 4)$	$124.4(7)$	$128.3(12)$	$122.6(14)$	$124.7(8)$
		Overall Mean Values		
$\mathrm{C}-\mathrm{C}$	$\mathrm{C}-\mathrm{C}-\mathrm{C}$			
$\mathrm{C}-\mathrm{H}$	$\mathrm{Ni}-\mathrm{C}-\mathrm{H}$	$108.0(2)$		
$\mathrm{Ni}-\mathrm{C}$	$\mathrm{H}-\mathrm{C}-\mathrm{C}$	$123.6(4)$		
$\mathrm{Ni}-\mathrm{Ni}$	$\mathrm{Ni}-\mathrm{Ni}-\mathrm{Ni}$	$126.0(3)$		
$\mathrm{Ni}-\mathrm{H}$	$\mathrm{Ni}-\mathrm{H}-\mathrm{Ni}$	$60.0(2)$		
$\mathrm{H} \ldots \mathrm{H}$	$\mathrm{H}-\mathrm{Ni}-\mathrm{H}$			
$\mathrm{Ni}-\mathrm{Cp}$		$93.9(3)$		

[^0]envisaged as a cube with one corner vacant. No indication of disorder of the hydride ligands was found. The substantial elongation of the thermal ellipspids of the cyclopentadienyl atoms suggests that there is considerable ring motion in the solid state (and possibly also limited disorder of the rings), even at the low temperature of data collection.

In this structure, the apical $\mathrm{Ni}(1)$ is unique in that it is bonded to all three H atoms. On this basis, one might predict that those $\mathrm{Ni}-\mathrm{Ni}$ bonds involving $\mathrm{Ni}(1)$ would be somewhat different from the others. However, the two groups of $\mathrm{Ni}-\mathrm{Ni}$ bonds have mean distances that are almost indistinguishable [2.477 (8) vs. 2.461 (5) \AA, see Table III], although the difference is in the expected direction, with bonds involving $\mathrm{Ni}(1)$ being very slightly longer on the average. The uniqueness of $\mathrm{Ni}(1)$ is manifested more clearly in the $\mathrm{Ni}-\mathrm{H}$ distances. The average $\mathrm{Ni}(1)-\mathrm{H}$ distance is 1.716 (3) \AA while the average $\mathrm{Ni}-\mathrm{H}$ distance involving $\mathrm{Ni}(2), \mathrm{Ni}(3)$, and $\mathrm{Ni}(4)$ is 1.678 (6) \AA. The H atoms are situated closer to the three basal Ni atoms, perhaps so that the $\mathrm{M}-\mathrm{H}$ bonding may be equally distributed among all four Ni atoms in the cluster. Another departure of $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$ from tetrahedral symmetry is seen in the positions of the Cp ring centroids, as was first observed in the X-ray structure. ${ }^{2}$ If X designates the centroid of the Ni_{4} cluster, the average $\mathrm{Cp}(1)-\mathrm{X}-\mathrm{Cp}(n)^{13}$ angle is $114(2)^{\circ}(n=2,3,4)$ while the average $\mathrm{Cp}-\mathrm{X}-\mathrm{Cp}$ angle not involving $\mathrm{Cp}(1)$ is $105(1)^{\circ}$. Thus, rings 2,3 , and 4 are bent toward the vacant $\mathrm{Ni}(2)-$ $\mathrm{Ni}(3)-\mathrm{Ni}(4)$ face of the cluster.

The average metal-metal distance in $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$ [2.469 (6) \AA] is $0.026 \AA$ shorter than that found at room temperature in nickel metal $(2.492 \AA) .{ }^{14} \mathrm{It}$ is, however, considerably longer than the $\mathrm{Ni}-\mathrm{Ni}$ single bonds in the ligand-bridged molecules $\mathrm{Ni}_{2} \mathrm{Cp}_{2}(\mathrm{PhC} \equiv \mathrm{CPh})(2.33 \AA)^{15}$ and $\mathrm{Ni}_{3} \mathrm{Cp}_{3}(\mathrm{CO})_{2}(2.39 \AA),{ }^{16}$ and the unbridged $\mathrm{Ni}-\mathrm{Ni}$ bonds in $\mathrm{K}_{4}\left[\mathrm{Ni}_{2}(\mathrm{CN})_{6}\right](2.32 \AA)^{17}$ and $\mathrm{Rb}_{4}\left[\mathrm{Ni}_{2}(\mathrm{CN})_{6}\right](2.29 \AA) .{ }^{18}$ The length of the $\mathrm{Ni}-\mathrm{Ni}$ bonds in $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$ may reflect the delocalization of the three excess electrons into low-lying antibonding Ni -centered orbitals. Hoffmann and co-workers have recently carried out extended Hückel calculations on $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$ and related tetrahedral clusters. ${ }^{19}$ They have shown that, for the 60 -electron $\mathrm{Ni}_{4} \mathrm{Cp}_{4}$ cluster, the lowest unoccupied molecular orbital is a degenerate set of three low-lying antibonding orbitals of t_{1} symmetry, which in $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$ become occupied by the electrons from the H atoms. This bonding picture rationalizes why a fourth H atom may not be added to $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$, and also explains the rather long $\mathrm{Ni}-\mathrm{Ni}$ distances in the cluster. ${ }^{20}$ In fact, the $\mathrm{Ni}-\mathrm{Ni}$ bond lengths are longer than the nonbonding $\mathrm{H} \cdots \mathrm{H}$ contact distances, which average 2.316 (6) \AA.

It is interesting to speculate where the unpaired electron

Figure 4. A schematic comparison between the HM_{3} fragments of $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$ and $\mathrm{HFeCo}_{3}(\mathrm{CO})_{9}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{3}$ (ref 21). It is suggested that the distances and angles found in these covalent molecules are reliable estimates for those associated with H atoms chemisorbed on metallic surfaces.
density may be in $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$. According to Hoffmann's calculations, ${ }^{19}$ it should be more or less equally distributed among the four metal atoms. With neutron diffraction, it is possible to study spin densities in paramagnetic systems under the influence of an external aligning field. However, in the present experiment, with no external field, the only effect of the paramagnetic scattering is to increase slightly the incoherent background.

The H atoms on $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$ are situated an average of 0.907 (6) \AA from the Ni_{3} planes (Figure 4). Individual $\mathrm{H} \cdots \mathrm{Ni}_{3}$ distances are $0.911,0.894$, and $0.915 \AA$ for $\mathrm{H}(1), \mathrm{H}(2)$, and $\mathrm{H}(3)$, respectively. Similar bonding situations are found in $\mathrm{HFe}-$ $\mathrm{Co}_{3}(\mathrm{CO})_{9}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{3}{ }^{21}$ and $\mathrm{H}_{4} \mathrm{Co}_{4} \mathrm{Cp}_{4}$. ${ }^{4}$ In $\mathrm{HFeCo}_{3}-$ $(\mathrm{CO})_{9}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{3}$ neutron diffraction measurements show the H atom to be 0.978 (3) \AA above the Co_{3} face of the cluster (Figure 4), while in $\mathrm{H}_{4} \mathrm{Co}_{4} \mathrm{Cp}_{4}$ the H atoms are found from an X-ray difference-Fourier map to be displaced by an average of $0.8 \AA$ from the faces of the tetrahedron. This difference of $\sim 0.2 \AA$ is consistent with the usual situation in which H atom positions derived from X-ray data yield bond lengths that are found to be systematically short. This effect is generally attributed to the fact that the centroid of electron density associated with a bonded H atom is not located at the nucleus but is displaced somewhat toward the atom(s) to which it is covalently linked.

The average $\mathrm{Ni}-\mathrm{C}$ distance in $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}[2.132(5) \AA$] falls in the range 2.11-2.14 \AA found in other cyclopentadienylnickel complexes (Table IV). The four cyclopentadienyl rings show no systematic deviations from planarity (Table V). The average out-of-plane deviation of the C atoms is only $0.003 \AA$, while that for the H atoms is $0.025 \AA$. It has been found that in several π-cyclopentadienyl complexes the ring H atom are systematically distorted toward the metal (as in $\mathrm{FeCp}_{2},{ }^{22.23} \mathrm{Fe}$ $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{COOH}\right)_{2},{ }^{24}$ and $\mathrm{CrCp}_{2}{ }^{22}$). However, examples are also known where the distortion is away from the metal [as in

Table IV. Molecular Dimensions (\AA) of Various Ni-Cp Complexes

compd	$\mathrm{Ni}-\mathrm{Cp}$	$\mathrm{Ni}-\mathrm{C}$	ref
$\mathrm{Cp}_{4} \mathrm{Ni}_{4} \mathrm{H}_{3}$	1.763	2.132	present work
$\mathrm{Cp}_{2} \mathrm{Ni}$	1.828	2.196	40
$\mathrm{Cp}_{4} \mathrm{Ni}_{5} \mathrm{~S}_{4}$	1.76	2.14	41
$\mathrm{Cp}_{3} \mathrm{Ni}_{3} \mathrm{~S}_{2}$	1.75	2.13	42
$\mathrm{Cp}_{2} \mathrm{Ni}_{2}(\mathrm{PhC} \equiv \mathrm{CPh})$	1.74	2.11	15
$\mathrm{Cp}_{3} \mathrm{Ni}_{3}(\mathrm{CO})_{2}$	1.74	2.12	16

$\left.\mathrm{HMo}_{2} \mathrm{Cp}_{2}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{2}\right)^{25}\right]$. In some cases, the out-of-plane distortion of the H atoms is apparently governed by packing considerations (as in $\mathrm{H}_{3} \mathrm{TaCp}_{2}{ }^{26}$). In $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$, a combination of effects may be important. H atoms on $\mathrm{Cp}(1)$ are systematically bent toward $\mathrm{Ni}(1)$, but no trend is apparent for the other three rings, except for the fact that the average out-ofplane deviation is always toward the Ni atoms.

The structure of $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$ can serve as a model for hydrogen adsorption on nickel metal. Because the $\mathrm{Ni}-\mathrm{Ni}$ distances are not very different between $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$ and Ni metal, it is reasonable to suppose that the absorption of hydrogen gas on some metal surfaces (such as the $\{111\}$ face of a ccp metal or the $\{001\}$ face of a hcp metal) may lead to a configuration very similar to that found in the compound studied here.

Existing evidence pertaining to the geometry of hydrogen chemisorption on Ni surfaces is somewhat contradictory, but is becoming increasingly supportive of multiply bonding H atoms. Early neutron inelastic scattering studies of hydrogen chemisorbed on Raney nickel suggested that the H atoms are terminally bound, based on the observation that peaks found at lower energy transfers ($<320 \mathrm{~cm}^{-1}$) are nearly identical with the spectrum of lattice frequencies of the pure metal. ${ }^{27}$ This conclusion was supported by extended Hückel calculations on nickel/hydrogen clusters, which indicated that the stability of hydrogen adsorption decreases in the order terminal $>$ bridging $>$ multiply bridging. ${ }^{28}$ However, more recent experimental and theoretical studies suggest otherwise. A reinvestigation of the neutron inelastic scattering spectra from hydrogen/Raney nickel, by the original workers ${ }^{29}$ and by others, ${ }^{30}$ indicate that most of the H atoms are nonterminally bound. These investigators found peaks at 950 and $1130 \mathrm{~cm}^{-1}$ (120 and 140 meV , respectively), frequencies which are normally associated with bridging or triply bridging hydride ligands in covalent metal hydride complexes. ${ }^{31}$ One of these groups ${ }^{30}$ also found a weak peak at $624 \mathrm{~cm}^{-1}(78 \mathrm{meV})$, which was assigned to hydrogen at a fourfold coordination site. Semiempirical ${ }^{32}$ and CNDO^{33} calculations on $\mathrm{H} / \mathrm{Ni}(111)$ revealed the threefold coordination site as most favored, and low-energy electron diffraction (LEED) measurements on the $\mathrm{H} / \mathrm{Ni}(111)$ system indicated the presence of triply bridging H atoms. ${ }^{34,35}$ The LEED analysis showed the H atoms to be situated in threefold positions $1.15 \pm 0.10 \AA$ above the Ni surface, yielding a $\mathrm{Ni}-\mathrm{H}$ bond length of $1.84 \pm 0.06 \AA$. This distance is within 3σ of the value of 1.691 (8) \AA determined in the present study for $\mathrm{H}_{3} \mathrm{Ni}_{4} \mathrm{Cp}_{4}$.

Hartree-Fock calculations for binding of a H atom at high-symmetry sites on Ni_{20} clusters also indicate that the triply bridging geometry is the most stable arrangement. ${ }^{36}$ In these calculations it was predicted that chemisorption energies would increase with the coordination number of the binding site, with bond energies of $1.6,2.8,3.2$, and 3.0 eV for one-, two-, three-, and fourfold coordinated sites, respectively. It was also predicted that $\mathrm{Ni}-\mathrm{H}$ bond distances would increase in the same order $(\mathrm{Ni}-\mathrm{H}=1.50,1.59,1.63$, and $1.78 \AA$ for coordination numbers of $1,2,3$, and 4). These distances are in quite good agreement with our present results, and also with the terminal $\mathrm{Ni}-\mathrm{H}$ distances of $1.47 \AA$ found in diatomic $\mathrm{NiH} .{ }^{37.38}$

Table V. Least-Squares Planes ${ }^{a}$ through Cyclopentadienyl Rings

A. Normal Equations				
$\mathrm{Cp}(2)$	$25.190 x+2.272 y-8.569 z-0.352=\delta$			
$\mathrm{Cp}(3)$	$0.445 x+5.214 y+11.815 z+1.081=\delta$			
$\mathrm{Cp}(4)$		-5.380y	$199 z-3$	
B. Out-of-Plane Deviations				
	$n=1$	$n=2$	$n=3$	$n=4$
$C(n 1)$	-0.007	0.003	0.000	0.003
$\mathrm{C}(\mathrm{n} 2)$	0.006	0.000	0.002	-0.004
$\mathrm{C}(\mathrm{n} 3)$	-0.003	-0.003	-0.003	0.003
$\mathrm{C}(n 4)$	-0.001	0.005	0.003	-0.001
$\mathrm{C}(\mathrm{n} 5)$	0.005	-0.005	-0.002	-0.001
$\mathrm{H}(n 1)$	0.035	0.026	-0.002	0.023
$\mathrm{H}(\mathrm{n} 2)$	0.015	0.054	-0.014	0.017
$\mathrm{H}(n 3)$	0.012	-0.010	-0.017	0.040
$\mathrm{H}(n 4)$	0.002	0.024	0.015	-0.016
H(n5)	0.021	-0.069	0.077	0.003
$\mathrm{Ni}(n)$	1.758	1.760	1.761	1.772
mean $\delta_{\mathrm{C}}=0.003 \AA$				
mean δ_{H}	. 025 \&			
mean $\mathrm{Ni}-\mathrm{Cp}=1.763$ (3) \AA				

a The out-of-plane deviation of an atom, δ, is in angstroms and x, y, and z are in fractional coordinates. The normal equations were calculated using only the carbon atom positions.

Based upon the results accumulated thus far, it appears that the triply bridging arrangement is indeed the most stable for the $\mathrm{H} / \mathrm{Ni}(111)$ system. Thus, we believe that the metal-hydrogen distances and angles found in metal hydride cluster complexes, such as the present $\mathrm{H}_{3} \mathrm{Ni}_{4}$ system, are reasonable estimates for those in binary metal hydrides. We anticipate that, as more examples of bridging, triply bridging, and interstitial metal-hydrogen bonds become accurately characterized in covalent clusters, ${ }^{39}$ we will have a better idea of the distances and angles associated with H atoms on a metallic surface or in bulk metals.

Acknowledgments. This research was supported by National Science Foundation Grants CHE-74-01541 and CHE-7700360 (to R.B.). Work at Brookhaven National Laboratory was performed under contract with the Department of Energy (Office of Basic Energy Sciences). We wish to thank Joseph Henriques for technical assistance, Dr. Marshall Newton for helpful discussions, and Drs. G. Ertl, W. A. Goddard, III, J. J. Rush, and W. H. Weinberg for supplying material prior to publication.

Supplementary Material Available: A listing of the observed and calculated structure factor amplitudes (4 pages). Ordering information is given on any current masthead page.

References and Notes

(1) (a) Brookhaven National Laboratory; (b) Technische Universität Berlin; (c) University of Southern California; (d) NIH Research Career Development Awardee, 1975-1980.
(2) (a) J. Müller, H. Dorner, G. Huttner, and H. Lorenz, Angew. Chem., Int. Ed. Engl., 12, 1005 (1973); Angew. Chem., 85, 1115 (1973); (b) G. Huttner and H. Lorenz, Chem. Ber., 107, 996 (1974).
(3) An account of the electron-counting procedure commonly used in metal clusters, and a discussion of "closed shell" configurations, is given in P. Chini, Inorg. Chim. Acta Rev., 2, 31 (1968).
(4) (a) J. Müller and H. Dorner, Angew. Chem., Int. Ed. Engl., 12, 843 (1973); Angew. Chem., 85, 867 (1973); (b) G. Huttner and H. Lorenz, Chem. Ber., 108, 973 (1975).
(5) (a) D. G. Dimmler, N. Greenlaw, M. A. Kelley, D. W. Potter, S. Rankowitz, and F. W. Stubblefield, IEEE Trans. Nucl. Sci., NS-23, 398 (1976); (b) R. K. McMullan, L. C. Andrews, T. F. Koetzle, F. Reidinger, R. Thomas, and G. J. B. Williams, NEXDAS, Neutron and X-ray Data Acquisition System, unpublished work, 1976.
(6) There is a significant shrinkage of the unit cell in the c direction upon cooling from room temperature to 81 K , and a concomitant decrease in cell volume, as expected. Examination of the crystal packing diagram (Figure 4 of ref

2b) shows that natural cleavage planes (corresponding to van der Waals contacts between layers of molecules) are approximately normal to the c direction.
(7) (a) D. H. Templeton and L. K. Templeton, Abstracts, American Crystallographic Association Meeting, Storrs, Conn., 1973, No. E10; (b) N. W. Alcock in '"Crystallographic Computing'', F. R. Ahmed, Ed., Munksgaard, Copenhagen, 1970, p 271; (c) J. de Meulenaer and H. Tompa, Acta Crystallogr., 19, 1014 (1965).
(8) The crystal was assumed to be bounded by seven planes with Miller indices (100), (100), (001), (001), (011), $(0 \overline{1} \overline{1})$, and ($\overline{110)}$.
(9) W. R. Busing, K. O. Martin, and H. A. Levy, ORFLs, Oak Ridge National Laboratory Report ORNL-TM-305, 1962.
(10) P. J. Becker and P. Coppens, Acta Crystallogr., Sect. A, 30, 129 (1974). The extinction model chosen was type I with a Lorentzian mosaic distribution.
(11) C. G. Shull, private communication, 1972.
(12) Esd's were obtained from the variance-covariance matrix prepared in a final cycle of refinement, where positional parameters for all atoms were varied, and thermal parameters were held fixed. A local modification of program ORFFE was used for these calculations: W. R. Busing, K. O. Martin, and H. A. Levy, Oak Ridge National Laboratory Report ORNL-TM-306, 1964.
(13) The Cp rings are numbered corresponding to the Ni atoms to which they are bonded.
(14) "Tables of Interatomic Distances and Configuration in Molecules and Ions", Supplement 1956-1959, Chem. Soc., Spec. Publ., No. 18, S 8s (1965).
(15) O. S. Mills and B. W. Shaw, J. Organomet. Chem., 11, 595 (1968).
(16) A. A. Hock and O. S. Mills in "Advances in the Chemistry of Coordination Compounds'", S. Kirschner, Ed., Macmillan, New York, 1961, p 640.
(17) (a) O. Jarchow, H. Schultz, and R. Nast, Angew. Chem., Int. Ed. Engl., 9, 71 (1970); Angew. Chem., 82, 43 (1970); (b) O. Jarchow, Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem., 136, 122 (1972).
(18) O. Jarchow, Z. Anorg. Allg. Chem., 383, 40 (1971).
(19) R. Hoffmann, B. E. R. Schilling, R. Bau, H. D. Kaesz, and D. M. P. Mingos, J. Am. Chem. Soc., 100, 6088 (1978),
(20) For purposes of comparison, the mean Co-Co distance in the 60-electron cluster $\mathrm{H}_{4} \mathrm{Co}_{4} \mathrm{Cp}_{4}$ is 2.467 (5) \AA (ref 4b), or $0.039 \AA$ shorter than the value of $2.506 A$ found in cobalt metal (ref 14, S 5s).
(21) R. G. Teller, R. D. Wilson, R. K. McMullan, T. F. Koetzle, and R. Bau, J. Am. Chem. Soc., 100, 3071 (1978).
(22) A. Haaland, Top. Curr. Chem., 53, 1 (1975).
(23) F. Takusagawa and T. F. Koetzle, Acta Crystallogr., in press.
(24) F. Takusagawa and T. F. Koetzle, to be published.
(25) J. L. Petersen, L. F. Dahl, and J. M. Williams, J. Am. Chem. Soc., 96, 6610 (1974).
(26) R. D. Wilson, T. F. Koetzle, D. W. Hart, \AA. Kvick, D. L. Tipton, and R. Bau, J. Am. Chem. Soc., 99, 1775 (1977).
(27) R. Stockmeyer, H. M. Conrad, A. Renouprez, and P. Fouilloux, Surf. Scl., 49, 549 (1975).
(28) (a) D. J. M. Fassaert, H. Verbeek, and A. van der Avoird, Surf. Sci., 29, 501 (1972); (b) D. J. M. Fassaert and A. van der Avoird, ibid., 55, 291 (1976); (c) ibid., 55, 313 (1976).
(29) A. J. Renouprez, P. Fouilloux, G. Coudurier, D. Tocchetti, and R. Stockmeyer, J. Chem. Soc., Faraday Trans. 1, 73, 1 (1977),
(30) R. D. Kelley, J. J. Rush, and T. E. Madey, submitted for publication.
(31) For a complete listing of stretching frequencies associated with bridging and triply bridging hydride ligands in covalent metal hydride complexes, see Table II in C. B. Cooper, III, D. F. Shriver, and S. Onaka, Adv. Chem. Ser., No. 167, 232 (1978).
(32) G. Doyen and G. Ertl, J. Chem. Phys., 68, 5417 (1978).
(33) G. Blyholder, J. Chem. Phys., 62, 3193 (1975).
(34) (a) M. A. van Hove, G. Ertl, K. Christmann, R. J. Behm, and W. H. Weinberg, Solid State Commun., 28, 373 (1978); (b) K. Christmann, R. J. Behm, G. Ertl, M. A. van Hove, and W. H. Weinberg, J. Chem. Phys., 70, 4168 (1979).
(35) However, in the LEED studies, ordered adsorbed layers were formed only below room temperature, and the potential energy barrier to diffusion of hydrogen on the surface is evidently quite low.
(36) T. H. Upton and W. A. Goddard, III, Phys. Rev. Lett., 42, 472 (1979).
(37) (a) G. Herzberg, "Spectra of Diatomic Molecules", Van Nostrand-Reinhold, Princeton, N.J., 1950; (b) A. Heimer, Z. Phys., 105, 56 (1937).
(38) For purposes of comparison, neutron diffraction measurements have indicated that H atoms occupy octahedral sites in the fcc lattice in nickel hydride $\left(\mathrm{NiH}_{0.6}\right)$, with a $\mathrm{Ni}-\mathrm{H}$ distance of $1.86 \AA$ [E. O. Wollan, J. W. Cable, and W. C. Koehler, J. Phys. Chem. Solids, 24, 1141 (1963)]. This value is very close to the CO-H distance of 1.82 (1) \AA found recently for the sixcoordinated H atom in the covalent cluster $\left[\mathrm{HCO}(\mathrm{CO})_{15}\right]^{-}[\mathrm{D} . \mathrm{W}$. Hart, R. G. Teller, C. Y. Wei, R. Bau, G. Longoni, S. Campanella, P. Chini, and T. F. Koetzle, Angew. Chem., Int. Ed. Engl., 18, 80 (1979); Angew. Chem., 91, 86 (1979)].
(39) For an up-to-date tabulation of metal-hydrogen bonds analyzed by sin-gle-crystal neutron diffraction techniques, see R. Bau, R. G. Teller, S. W. Kirtley, and T. F. Koetzle, Acc. Chem. Res., 12, 176 (1979).
(40) L. Hedberg and K. Hedberg, J. Chem. Phys., 53, 1228 (1970).
(41) H. Vahrenkamp and L. F. Dahl, Angew. Chem., Int. Ed. Engl., 8, 144 (1969); Angew. Chem., 81, 152 (1969).
(42) H. Vahrenkamp, V. A. Uchtman, and L. F. Dahl, J. Am. Chem. Soc., 90, 3272 (1968).
(43) C. K. Johnson, ORTEP-II, Oak Ridge National Laboratory Report ORNL-5138, 1976.

Analysis of the Oscillations in "Beating Mercury Heart" Systems

Joel Keizer,* Peter A. Rock,* and Shu-Wai Lin ${ }^{1}$
Contribution from the Chemistry Department, University of California, Davis, California 95616. Received February 12, 1979

Abstract

A column of mercury whose top surface is covered with aqueous acid or base undergoes periodic changes in height when the surface is brought into contact with a corroding metal electrode. The voltage between the mercury and the corroding electrode also undergoes periodic changes which we have followed on an oscilloscope. We present here a thorough analysis of a mechanism for these oscillations which is based on the effect of voltage and adsorption on the surface tension of mercury. Oscillations in sulfuric acid solutions of strong oxidants, such as $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})$, apparently are associated with a film of $\mathrm{Hg}_{2} \mathrm{SO}_{4}$ on the mercury. The reduction of this film by the corroding electrode--or, in the absence of strong oxidants, the reduction of electron acceptors such as $\mathrm{O}_{2}(\mathrm{aq})$-modifies the surface tension of mercury. For an appropriate placement of the corroding electrode and the mercury, the altered surface tension switches the direction in which the surface moves. This effect breaks electrical contact between the mercury and the corroding electrode, so that the voltage of the mercury is free to rise as the oxidation or reduction process proceeds. The increasing voltage, in turn, modifies the surface tension in such a manner as to bring the mercury and electrode back into contact, completing the oscillation. We support this mechanism with quantitative measurements of the oscillations under a variety of conditions. Finally we show that the linit-cycle oscillations which occur in a simple mathematical model of this mechanism are in close correspondence to the observed oscillations.

I. Introduction

Oscillations in electrochemical systems have been known for many years, ${ }^{2,3}$ although they have often been treated as curiosities of little consequence. Recently, however, it has been recognized that oscillations are among the novel kinds of phenomena that can occur in systems which are far from equilibrium..$^{4-6}$ For these sort of systems it is apparent that the
kinetic point of view is more fundamental than the thermodynamic. In fact, the kinetic point of view is more fundamental than the thermodynamic, quite generally, if one takes cognizance of the molecular mechanisms which underlie the kinetics. ${ }^{7}$ In chemical investigations this molecular perspective is mandatory, and we adopt it here.
lt is our purpose in this communication to describe work

[^0]: a Standard deviations of mean values have been calculated as $\left[\Sigma\left(x_{i}-\bar{x}\right)^{2} / n(n-1)\right]^{1 / 2}$, where n is the number of observations. The resulting deviations are to be regarded as rough estimates of uncertainty, in cases where $n=3 .{ }^{b} \mathrm{Cp}=$ center of cyclopentadienyl ring; $\mathrm{X}=$ centroid of Ni_{4} tetrahedron. ${ }^{c}$ Computed from the perpendicular distances from the Ni atoms to the Cp ring planes.

